13th International Conference on Optics, Lasers & Photonics (CSE

Added by Laura Salas on 2019-02-25

Conference Dates:

Start Date Start Date: 2019-05-13
Last Date Last Day: 2019-05-14

Conference Contact Info:

Contact Person Contact Person: Marilyn. B. Turner
Email Email: [email protected]
Address Address: Chiba Prefecture, Tokyo, Japan

Conference Description:

Conference Series LLC Ltd. heartily welcomes you to attend the "International Conference on Optics, Lasers & Photonics" during May, 2019 at Tokyo , Japan.
The main theme of the conference is "A New Era in Laser, Optics and Photonics Technologies for the Next Generation".
We cordially invite all the participants who are interested in sharing their knowledge and research in the area of Physics,Optics, Laser and Optical Engineering.Optics and Laser Technologies anticipates more than 300 participants around the globe with thought provoking Keynote lectures, Oral and Poster presentations.

Opportunity to attend the presentations delivered by eminent scientists, researchers, experts from all over the world. Participation in sessions on specific topics on which the conference is expected to achieve progress. Global networking in transferring and exchanging Ideas. Share your excitement in promoting new ideas, developments and innovations in Optics-Laser 2019.

Why to Attend?

In the of this theme, the conference series aims to disseminate the advancements of research in optics and laser technologies to the global community by creating a platform for active participation, exchange of expertise and lateral thinking from researchers, scientists, and educators through invited plenary lectures, symposia, workshops, invited sessions and oral and poster sessions of unsolicited contributions. Conference Series look forward to welcoming you to an inspiring, educational and enjoyable program in Tokyo, Japan with the intent of emphasizing the applications of optics and laser technologies research to the improvement of the global strength.

Target Audience:

Physicist
Radiologist
Dentist
Ophthalmologist
Oncologist
Cosmetic Surgeons
Professors
Academic Scientist
Students
Researchers
Astronomist
Laser Technician
Directors, Managers and CEO

Tracks/Sessions

Laser Systems

LASER stands for light amplification by stimulated emission of radiation. We all know that light is an electromagnetic wave. Each wave has its own brightness and colour, and vibrates at a certain angle, called polarization. This theory also applies to laser light but it is more parallel than any other light source. Every part of the beam has almost exact same direction and so the beam will diverge very little. With a good laser an object at a distance of 1 km can be illuminated with a dot about 60 mm in radius. As it is so parallel, it can be focused to very small diameters where concentration of light energy becomes so high that you can drill, cut, or turn with the ray. It is also possible to illuminate and examine very tiny details with the lasers, thus it is used in surgical applications and CD players as also. It can also be made very monochromic, thus only one light wavelength is present. This is not the instance with the ordinary light sources. White light contains all colours in the spectrum, but even a coloured light, such as a red LED contains a repeated interval of red wavelengths.

Optics and Laser Conference | Physics Conference | Laser and Photonics Conference | Photonics Conference

Optoelectronics

Optoelectronics is the field of technology that associates the physics of light with electricity. It incorporates the design, study and manufacture of hardware devices that convert electrical signals into photon signals and photons signals to electrical signals. Any device that operates as an electrical-to-optical or optical-to-electrical is considered an optoelectronic device. Optoelectronics is built up on the quantum mechanical effects of light on electronic materials, sometimes in the presence of electric fields, especially semiconductors. Optoelectronic technologies comprise of laser systems, remote sensing systems, fibre optic communications, optical information systems, and electric eyes medical diagnostic systems.

Optics and Laser Conference | Physics Conference | Laser and Photonics Conference | Photonics Conference


Quantum Science and Technology

A quantum sensor is the device that exploits quantum correlations such as quantum entanglement to achieve sensitivity or the resolution that is better than can attain using only classical systems. A quantum sensor can measure effect of quantum state of alternative system by itself. The simple act of measurement influences quantum state and varies the probability and the uncertainty associated with its state during measurement. Quantum sensor is the term used in other settings wherever entangled quantum systems are browbeaten to make better more sensitive magnetometers or atomic clocks. Quantum Photonics is to explore the fundamental features of quantum mechanics and also the work towards future photonic quantum technologies by manipulating, generating and measuring single photons as well as the quantum systems that emit photons. The market for quantum dots-built products such as new television screens is projected to reach $3.5 billion by 2020. The majority of this growth will come from increased demand in the US.

Optics and Laser Conference | Physics Conference | Laser and Photonics Conference | Photonics Conference

Optical Fiber

An optical fiber is a flexible as well as transparent fiber made by silica glass or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used mostly to transmit light between the two ends of the fiber and widely used in fiber-optic communications, unlike cable wires optical fiber permits transmission over longer distances and at higher bandwidths than wire cables. Instead of metal wires fibers are used because signals travel along them with lesser amounts of loss; in addition to this fiber are also safe to electromagnetic interference, a problem to which metal wires suffer excessively. Specially designed fibers are also used for a various other application, some of them being fiber lasers and fiber optic sensors.

Applications and Trends in Optics and Photonics

Applications of photonics are abundant. They include in our everyday life to the most advanced science, e.g. information processing, light detection, spectroscopy, telecommunications, lighting, information processing, lighting, metrology, laser material processing, spectroscopy, medicine, military technology, bio photonics, agriculture, robotics, and visual art.

Fiber Laser Technology

Fiber lasers are basically different from other laser types; in a fiber laser the active medium that produces the laser beam is actually isolated within the fiber optic itself. This discriminates them from fiber-delivered lasers where the beam is merely transported from the laser resonator to the beam delivery optics. Fiber lasers are now widely known because of its most focusable or highest brightness of any laser type. The essentially scalable concept of fiber lasers has been used to scale multimode fiber lasers up to the output power greater than 50 kW and single mode fiber lasers capable of 10kW in power. Optical imaging is an imaging technique that usually describes the behavior of visible, ultraviolet, and infrared light used in imaging. Since light is an electromagnetic wave, similar portents occur in X-rays, microwaves, radio waves.

-----------------------------------
2019 Upcoming Soon
-----------------------------------

Please contact the event manager Marilyn (marilyn.b.turner(at)nyeventslist.com ) below for:
- Multiple participant discounts
- Price quotations or visa invitation letters
- Payment by alternate channels (PayPal, check, Western Union, wire transfers etc)
- Event sponsorship
© 2024 World Conference Calendar. All rights reserved.